Resilience
The risk of hazards like natural disasters and extreme heat is underestimated. Stronger construction to mitigate it is undervalued.
MIT CSHub studies how cities can be made more resilient to hazards through investment in stronger, cooler construction.
Our research integrates neighborhood texture, the density and configuration of buildings in an area, into hazard risk and loss analysis to reveal the value of stronger construction, identify areas and groups most at financial risk, and understand the greenhouse gas emissions of less strong construction. Additionally, our investigation of cool pavements has shown how they cool cities and the climate.
Ongoing Projects
Community-Scale Resilience Assessment
To provide a comprehensive picture of the economic vulnerability of structures in a specific community when subject to different hazards, CSHub focuses on the vulnerability assessment of buildings considering the neighborhood texture-driven pressure amplification and related costs of repair and recovery. The outcome of this research will serve the community as a tool to quantify and visualize the vulnerability of their neighborhood considering the construction method and local climate conditions.
Building & Neighborhood-specific Fragility Assessment
In this project, inspired by molecular modeling and based on the structure types and components for several hazards, building-specific fragility curves will be developed. In addition to the variety of hazards, the performance of building components such as windows, siding, doors, and roofs will be added to the modeling portfolio through a combination of analysis and validation data. The result outputs will demonstrate how the fragility curves can enable a performance-based approach to resilience rating systems. The outcome of this research will be used in conjunction with other hazard resistance tools and life cycle economic and environmental analysis tools in support of performance-based resilience ratings.
Scalable, Time-sensitive Flood Risk Modeling
In order to forecast fluvial and pluvial flooding risks, CSHub will develop a framework that incorporates above-ground city textures while detecting the flow of flooding on the surface. The outcome of this project is targeted to support rapid assessments of current infrastructure to the risks of climate variability, and climate change, as well as urban and suburban land use change. The tool will also be beneficial to agencies that are currently assessing the cost of climate change adaptation on urban infrastructure.
Application Areas
Albedo and Cool Pavements
Albedo is a measure of a surface’s reflectivity — surfaces with low albedo reflect less light than do surfaces with high albedo. This has several implications for combatting phenomena such as the urban heat island effect. “Cool pavements,” those high in albedo, reflect more sunlight into the atmosphere, increasing ambient temperatures less than dark pavements.
News
- What can cities and towns do to lower extreme temperatures? (Ask MIT Climate, July 2023)
- Cool pavement is like sunscreen for streets. Can it take the heat out of concrete cities? (The Globe and Mail, July 2023)
- Extreme heat kills inequitably: Reflective pavements can help, but city action is required. (The Hill, August 2022)
- Q&A: Randolph Kirchain on how cool pavements can mitigate climate change. (MIT News, March 2022)
- Solutions to extreme heat can be found in our streets. (Boston Globe, April 2021)
- Cool pavements research builds as temperatures rise (Smart Cities Dive, September 2021)
- Could ‘cool pavements’ help in the battle against climate change? (Yahoo News, August 2021)
Topic Summaries
- Mitigating Climate Change with Reflective Pavements (November 2020)
- Urban Heat Islands (June 2019)
- Albedo Information Sheet (April 2019)
Research Briefs
- A High-Level Analysis of Context-Dependent Albedo Effects (May 2015)
- Quantifying Climate Impacts of Surface Albedo (July 2015)
- The Impact of Changes to Surface Albedo on Radiative Forcing (January 2016)
- Quantifying the impact of pavement reflectivity on radiative forcing and building energy demand in neighborhoods (March 2017)
- Climate Change Mitigation Potential of Pavement Albedo (January 2018)
Publications
- AzariJafari, Hessam, et al. “Urban-scale evaluation of cool pavement impacts on the urban heat Island effect and climate change.” Environmental Science & Technology 55.17 (2021): 11501-11510.
- Gregory, J., AzariJafari, H., Vahidi, E., Guo, F., Ulm, F.J., Kirchain, R. “The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements.” PNAS. September 14, 2021 118 (37).
Alkali-Silica Reaction (ASR)
The Alkali-Silica Reaction (ASR) causes expansion and cracking in concrete. This can result in structural problems in concrete infrastructure that can limit the infrastructure’s service life and also generate high maintenance costs. CSHub research seeks to better understand the reaction and its mechanisms, which is key to determining solutions that will prolong the life of concrete infrastructure.
News
- Investigating a Big Dam Concrete Problem (MIT News, September 2017)
Research Briefs
- Investigating the Mechanisms of ASR Using Atomistic Methods (July 2020)
- Simulating the Formation of ASR Gels (April 2019)
- Atomistic Modeling of ASR Gel (August 2017)
- Bottom-up Modeling of ASR in Concrete (March 2016)
Publications
- Dufresne, A., Arayro, J., Zhou, T., Ioannidou, I., Ulm, F.J., Pellenq, R., & Béland L. K. Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste, The Journal of Chemical Physics, Volume 149, 70, 2018.
- Dupuis, R; Béland, L.K. & Pellenq, R. Molecular simulation of silica gels: Formation, dilution, and drying, Physical Review Materials, Volume 3, 7, 2019.
Conductive Concrete
The CSHub has long investigated multifunctional concrete, and has uncovered a way to store energy in a mixture of carbon black, cement, and water. The technology has potential applications towards bulk energy storage, on-road EV charging, self-heating pavements, energy-autarkic structures, and more.
News
- MIT engineers create an energy-storing supercapacitor from ancient materials (MIT News, July 2023)
- Is cement the solution to storing renewable energy? Engineers at MIT think so. (Boston Globe, August 2023)
- Energy-storing concrete could form foundations for solar-powered homes (NewScientist, July 2023)
Publications
- Chanut, N., Stefaniuk, D., Weaver, J. C., Zhu, Y., Shao-Horn, Y., Masic, A., & Ulm, F. J. (2023). Carbon–cement supercapacitors as a scalable bulk energy storage solution. Proceedings of the National Academy of Sciences, 120(32), e2304318120.
- Soliman, N. A., Chanut, N., Deman, V., Lallas, Z., & Ulm, F. J. (2020). Electric energy dissipation and electric tortuosity in electron conductive cement-based materials. Physical Review Materials, 4(12), 125401.
Creep
Creep, the gradual structural deformation in concrete under a load, it is known to impact on the durability of concrete structures. CSHub researchers are working to better understand what causes creep starting at the nanoscale.
News
- Riddle of cement’s structure is finally solved (February 2016)
Research Briefs
- Toward Understanding Cement Paste Creep (January 2017)
- Holding It Together – C-S-H Cohesion (December 2011)
- Predicting CSH Aging (March 2013)
Publications
- Bauchy, M., Masoero, E., Ulm, F.-J., & Pellenq, R. Creep of Bulk C-S-H: Insights from Molecular Dynamics Simulations, in C. Hellmich, B. Pichler, J. Kollegger (eds.), CONCREEP 10: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, ASCE, 2015
- Cao, P., Short, M.P., and Yip, S. “Understanding the mechanisms of amorphous creep through molecular simulation,” PNAS, December 26, 2017, vol. 114 no. 52.
- Haist, M., Divoux, T., Krakowiak, K. J., Skibsted, J., Pellenq, R. J. M., Müller, H. S., & Ulm, F. J. (2021). Creep in reactive colloidal gels: A nanomechanical study of cement hydrates. Physical Review Research, 3(4), 043127.
- Masoero E., Bauchy, M., Del Gado, E., Manzano, H., Pellenq, R. M, Ulm, F.-J., & Yip, S. Kinetic Simulations of Cement Creep: Mechanisms from Shear Deformations of Glasses, C. Hellmich, B. Pichler, J. Kollegger (eds.), CONCREEP 10 : Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, ASCE, 2015
- Short, M. and Yip, S., “Multiscale materials modelling at the mesoscale,” Nature Materials, Volume 12, September 2013.
- Vandamme, M.; Ulm, F.J., “Nanoindentation investigation of creep properties of calcium silicate hydrates,” Cement and Concrete Research, Volume 52, Pages 38-52, 2013
Flood Modeling
Flooding is both one of the most frequent and one of the most devastating natural disasters. A majority of cities analyzed in a UN Department of Economic and Social Affairs report were found to be highly vulnerable to flood-related mortality (76%) and/or economic losses (72%). Even cities with low levels of flood exposure must take the hazard seriously: 26.5% of cities studied had low flood exposure but high flood-related mortality risk, 24.0% of cities studied had low flood exposure yet high flood-related economic risk. The CSHub is investigating novel flood modeling methodologies to better capture risk to urban areas.
News
- Studying floods to better predict their dangers (MIT News, October 2022)
Research Briefs
- Accessible Multi-scale Flood Modeling via the 3D Lattice Approach (November 2023)
- Assessing Urban Flood Risks: The Critical Role of Dynamic Modeling (November 2022)
Hazard-Aware Building Life Cycle Cost Analysis
In hazard-prone areas, hazard-induced maintenance costs can be significant over the lifetime of a building. In fact, the costs of hazard-related repairs can exceed the initial building cost. Our team has developed a building life cycle cost analysis (LCCA) approach that incorporates operational costs associated with energy consumption and repairs due to damage from hazards. Our case studies have demonstrated that investing in more hazard-resistant residential construction in certain locations is very cost-effective.
News
- Hurricane-resistant construction may be undervalued by billions of dollars annually (July 2022)
- MIT Climate Portal: Climate-Resilient Infrastructure (September 2021)
- MIT News: Mitigating hazards with vulnerability in mind (September 2021)
- The Hill: Climate Resilience is the New Sustainability (May 2021)
- Building to Better Weather the Storm (MIT News, June 2017)
- Build disaster-proof homes before storms strike, not afterward (The Conversation, August 2016)
- New approach calculates benefits of building hazard-resistant structures (MIT News, December 2016)
Topic Summaries
- Fact Sheet: Resilient Buildings (May 2020)
- Topic Summary: City Texture and Urban Resilience (March 2020)
- Information Sheet: Building Resilience (May 2018)
- Building Life Cycle Cost Analysis: Life Cycle Costs of Hazard Resistant Buildings (February 2017)
Research Briefs
- Kinetic temperature of structures: a new approach for building resilience assessment (April 2023)
- Measuring Cost Burden of Hurricane Repairs on Socially Vulnerable Households (October 2022)
- Molecular Dynamics-based Resilience Assessment of Structures (May 2021)
- Incorporating Neighborhood Texture Into Hurricane Loss Estimation (March 2021)
- Precipitation Flooding in Urban Environments (March 2021)
- Molecular Dynamics-based Resilience Assessment of Structures (July 2020)
- Generating Building-specific Fragility Curves (May 2019)
- Validation of Molecular Dynamics-Based Structural Damage Models (March 2019)
- Creating Customized Fragility Curves for Resilient Building (November 2018)
- Resilience Assessment of Structures Using Molecular Dynamics (June 2018)
- Prioritizing Resilient Retrofits (February 2018)
- Planning More Resilient Cities (March 2017)
- A Break-Even Hazard Mitigation Metric (July 2016)
- Quantifying Hazard Life-Cycle Cost (August 2014)
- Hazard Mitigation Assessment Methodologies (August 2013)
- Quantitative Assessment of Resilience in Residential Building Envelope Systems (March 2013)
Publications
- Keremides, Konstantinos; Qomi, Mohammad Javad Abdolhosseini; Pellenq, Roland J. M.; and Ulm, Franz-Josef. “Potential-of-Mean-Force Approach for Molecular Dynamics–Based Resilience Assessment of Structures” Journal of Engineering Mechanics, Volume 144, Issue 8 (2018)
- Keremidis, K., Vartziotis, T., & Ulm, F. J. (2023). Kinetic Temperature of Structures for Resilience, Instability, and Failure Analysis of Building Systems. Journal of Engineering Mechanics, 149(2), 04022110.
- Manav, Ipek Bensu, et al. “Texture-Informed Approach for Hurricane Loss Estimation: How Discounting Neighborhood Texture Leads to Undervaluing Wind Mitigation.” Natural Hazards Review 23.4 (2022): 05022006.
- Noori, M., Miller, R., Kirchain, R., Gregory, J., “How much should be invested in hazard mitigation? Development of a streamlined hazard mitigation cost assessment framework,” International Journal of Disaster Risk Reduction (2018)
- Noshadravan, A.; Miller, T.R.; and Gregory, J. “A Lifecycle Cost Analysis of Residential Buildings Including Natural Hazard Risk” Journal of Construction and Engineering Management (2007).
Pavement Life Cycle Assessment (LCA)
Life cycle assessment (LCA) considers all life-cycle phases from initial construction to demolition. For pavements, this includes the operation, maintenance, and end of life phases, and factors such as traffic delay, lighting demand, and future maintenance. CSHub models quantify environmental impacts across a pavement’s life cycle from manufacturing to disposal and offer detailed analyses of the use phase.
News
- The Hill: We’re overhauling our cars in the name of energy efficiency — why not our roads? (January 2024)
- MIT News: Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed (February 2023)
- MIT News: Concrete’s role in reducing building and pavement emissions (September 2021)
- Yahoo News: Could ‘cool pavements’ help in the battle against climate change? (August 2021)
- MIT News: Countering climate change with cool pavements (August 2021)
- The Boston Globe: Solutions to Extreme Heat Can be Found in Our Streets (August 2021)
- The Conversation: Lighter Pavement Really Does Cool Cities (June 2021)
Topic Summaries
- Mitigating Climate Change with Reflective Pavements (November 2020)
- Context Dependent Pavement Life Cycle Analysis (July 2019)
- Life Cycle Thinking: Pavements (March 2018)
Research Briefs
- Solutions for Net-zero Carbon Concrete in U.S. Pavements (July 2021)
- Life Cycle Carbon Uptake of the United States Pavement Network (January 2021)
- Impact of Use Phase in Pavement Life Cycle Assessment: A Case Study of Alternative Designs in Different Contexts (April 2014)
- Key Drivers of Uncertainty in Pavement LCA (November 2012)
- Comparative Pavement LCAs With Uncertainty (June 2012)
- Network, Pavements and Fuel Consumption (April 2012)
- Adopting a Life Cycle Perspective (April 2011)
- Designing for Sustainable Pavements (March 2011)
Publications
- Akbarian M., Moeini-Ardakani S.S., Ulm F.-J., Nazzal M., “Mechanistic Approach to Pavement-Vehicle Interaction and Its Impact on Life-Cycle Assessment,” Transportation Research Record: Journal of the Transportation Research Board, No. 2306, Pages 171-179, 2012
- AzariJafari, H., Guest, G., Kirchain, R., Gregory, J., & Amor, B. (2021). Towards comparable environmental product declarations of construction materials: Insights from a probabilistic comparative LCA approach. Building and Environment, 190, 107542.
- AzariJafari, H., Guest, G., Kirchain, R., Gregory, J., Amor, B. “Towards comparable environmental product declarations of construction materials: Insights from a probabilistic comparative LCA approach”, Building and Environment, 190: 2021, 107542. 2021.
- AzariJafari, H., Guo, F., Gregory, J., & Kirchain, R. (2023). Solutions to achieve carbon-neutral mixtures for the US pavement network. The International Journal of Life Cycle Assessment, 1-14.
- AzariJafari, H., Rangelov, M., Gregory, J., & Kirchain, R. (2023). Suitability of EPDs for Supporting Life Cycle and Comparative Analysis of Concrete Mixtures. Environmental Science & Technology, 57(19), 7321-7327
- Gregory, J., AzariJafari, H., Vahidi, E., Guo, F., Ulm, F.J., Kirchain, R. “The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements.” PNAS. September 14, 2021 118 (37).
- Gregory, J., Noshadravan, A., Olivetti, E.A., Kirchain, R., “A Methodology for Robust Comparative Life Cycle Assessments Incorporating Uncertainty.” Environmental Science & Technology, Vol. 50: Issue. 12: Pages. 6397-6405.
- Gregory, Jeremy, et al. “The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements.” Proceedings of the National Academy of Sciences 118.37 (2021): e2021936118.
- Guo, F., AzariJafari, H., Gregory, J., Kirchain, R. “Environmental and economic evaluations of treatment strategies for pavement network performance-based planning”, Transportation Research D: Transport and Environment. Volume 99, October 2021, 103016
- Guo, Fengdi, et al. “A weighted multi-output neural network model for the prediction of rigid pavement deterioration.” International Journal of Pavement Engineering 23.8 (2022): 2631-2643.
- Huang, Y., Wolfram, P., Miller, R., Azarijafari, H., Guo, F., An, K., … & Wang, C. (2022). Mitigating life cycle GHG emissions of roads to be built through 2030: Case study of a Chinese province. Journal of Environmental Management,
- J. Gregory, A. Noshadravan, O. Swei, X. Xu, R. Kirchain, “The importance of incorporating uncertainty into pavement life cycle cost and environmental impact analyses,” Proceedings of the Pavement Life-Cycle Assessment Symposium 2017, Champaign, IL, April 12-13, 2017
- J. Mack, J. Gregory, R. Kirchain, “Accounting for Rehabilitation Activity Uncertainty in a Pavement Life Cycle Assessment using Probability and Decision Tree Analysis,” Proceedings of the International Concrete Sustainability Conference, Miami, FL, May 11-13, 2015.
- J. Mack, X. Xu, J. Gregory, R. Kirchain, “Developing robust rehabilitation scenario profiles for life cycle assessment using decision tree analysis,” Proceedings of the International Symposium on Pavement LCA, Davis, CA, October 14-16, 2014.
- Kirchain, R., Gregory, J., Olivetti, E. “Environmental life-cycle assessment.” Nature Materials, 16 693–697 (2017)
- Loijos A., Akbarian M., Sahni S., Ochsendorf J., “Sensitivity Analysis of the Life Cycle Environmental Performance of Asphalt and Concrete Pavements,” Concrete Sustainability Conference, 2010
- Loijos A., Santero N., Ochsendorf J. “Life cycle climate impacts of the US concrete pavement network.” Resources, Conservation and Recycling. Volume 72, March 2013, Pages 76-83, 2013.
- Louhghalam A., Akbarian, M., Ulm F-J. “Carbon management of infrastructure performance: Integrated big data analytics and pavement-vehicle-interactions”. Journal of Cleaner Production. Volume 142, Part 2, 20 January 2017, Pages 956-964. 2016
- M. Akabarian, F. Ulm, X. Xu, R. Kirchain, J. Gregory, A. Louhghalam, J. Mack, “Overview of pavement life cycle assessment use phase research at the MIT Concrete Sustainability Hub”, ASCE T&DI International Airfield and Highway Pavements Conference, Chicago, IL, July 21-24, 2019.
- Mack J., Ulm F.-J., Gregory J., Kirchain R., Akbarian M., Swei O., Wildnauer M., “Designing Sustainable Concrete Pavements using the Pavement-ME Mechanistic Empirical Pavement Design and Life Cycle Analysis,” International Conference on Long-Life Concrete Pavement, 2012
- Noshadravan A., Wildnauer M., Gregory J., Kirchain R., “Comparative Pavement Life Cycle Assessment with Parameter Uncertainty,” Transportation Research Part D, 25, Pages 135-138, 2013
- Noshadravan A., Xu X., Gregory J., Kirchain R., “Uncertainty management in comparative life-cycle assessment of pavements”, Proceedings of the 12th International Symposium on Concrete Roads, Prague, Czech Republic, September 23-26, 2014.
- Safari, K., & AzariJafari, H. (2021). Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustainable Cities and Society, 67, 102728.
- Santero N., Loijos A., Ochsendorf J., “Greenhouse Gas Emissions Reduction Opportunities for Concrete Pavements,” Journal of Industrial Ecology, Volume 17, Issue 6, Pages 859–868, 2013
- Xin Xu, Mehdi Akbarian, Jeremy Gregory, Randolph Kirchain, “Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context”, Journal of Cleaner Production, 2019.
- Xu X., Noshadravan A., J. Gregory, R. Kirchain, “Scenario analysis of comparative pavement life cycle assessment using a probabilistic approach,” Proceedings of the International Symposium on Pavement LCA, Davis, CA, October 14-16, 2014.
- Xu, X., Gregory J., Kirchain R., “Role of the Use Phase and Pavement-Vehicle Interaction in Comparative Pavement Life Cycle Assessment” Transportation Research Board 94th Annual Meeting. No. 15-4011. 2015.
- Xu, X., Gregory, J., & Kirchain, R. “Role of the Use Phase and Pavement-Vehicle Interaction in Comparative Pavement Life Cycle Assessment,” Proceedings of the Transportation Research Board 97th Annual Meeting, 2018.
- Xu, X., Wildnauer, M., Gregory, J., & Kirchain, R. “Accounting for Variation in Life Cycle Inventories: The Case of Portland Cement Production in the U.S.”, R.E. Kirchain et al. (Eds), REWAS 2016: Towards Materials Resource Sustainability, Springer AG.
Pavement Life Cycle Cost Analysis (LCCA)
A life cycle cost analysis (LCCA) is an analysis methodology that enables engineers, designers, and decision-makers to better understand the economic impacts of infrastructure decisions over time along with the opportunities that exist to reduce impacts. CSHub pavements LCCA research considers life cycle, context, and future, and also incorporates risk.
News
- Paving ahead (MIT News, April 2019)
Topic Summaries
- Life Cycle Thinking: Pavements (March 2018)
- Measuring the Impact of Competition on Paving Material Prices (November 2017)
- Pavement Life Cycle Cost Assessment: Price Projection Modeling (April 2016)
Research Briefs
- The influence of analysis period on pavement network performance (November 2017)
- Estimating The Impact Of Competition (February 2016)
- Developing a Network-Level Pavement Management Model (November 2015)
- Material-Specific Price Projections: Implementation (September 2014)
- LCCA of Pavements: Scenario Analysis (February 2014)
- Initial Cost Uncertainty in LCCA (May 2013)
Publications
- Guo, F., AzariJafari, H., Gregory, J., Kirchain, R. “Environmental and economic evaluations of treatment strategies for pavement network performance-based planning”, Transportation Research D: Transport and Environment. Volume 99, October 2021, 103016
- M. Akbarian, O. Swei, and J. Gregory, Probabilistic Characterization of Life-Cycle Agency and User Costs: Case Study of Minnesota, Transportation Research Record: Journal of the Transportation Research Board, No. 2639, 2017, pp. 93–101. 2017
- O. Swei, M. Akabarian, J. Gregory, R. Kirchain, J. Mack, “A review of pavement economic studies at the MIT Concrete Sustainability Hub”, ASCE T&DI International Airfield and Highway Pavements Conference, Chicago, IL, July 21-24, 2019.
- Omar, S., Gregory, J., & Kirchain, R. (2018). Does Pavement Degradation Follow a Random Walk with Drift? Evidence from Variance Ratio Tests for Pavement Roughness, Journal of Infrastructure Systems, Vol 24, no.4, 2018.
- Swei O., Gregory J., Kirchain R., Pavement Management Systems: Opportunities to Improve the Current Frameworks Transportation Research Board 95th Annual Meeting, No. 16-2940. 2016.
- Swei, O. Probabilistic Life-Cycle Cost Analysis of Pavements: Drivers of Variation and Implications of Context, Transportation Research Record: Journal of the Transportation Research Board, No. 2523. Pages 47–55. 2016.
- Swei, O., Gregory, J., and Kirchain, R. Probabilistic Approach for Long-Run Price Projections: Case Study of Concrete and Asphalt. Journal of Construction Engineering and Management. 2016.
- Swei, O., Gregory, J., Kirchain, R., Construction cost estimation: A parametric approach for better estimates of expected cost and variation. Transportation Research Part B: Methodological. Volume 101, July 2017, Pages 295–305