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Significant research has been conducted over the past decade to enhance 
probabilistic pavement life-cycle cost analysis (LCCA) models, yet the 
drawing of broad conclusions from different studies is difficult because 
of the significant variation in scope and sources of uncertainty. Specifi-
cally, these two issues make it difficult to infer from existing research 
(a) which parameters are significant contributors to uncertainty for a 
specific context and (b) how context affects the analysis. The goal of 
this research was to address this problem by implementing an LCCA 
model in a range of scenarios that vary in location, traffic conditions, 
design life (e.g., year to first rehabilitation), analysis period, mainte-
nance schedule, and discount rate. Results from the analysis indicated 
that, in relation to the drivers of variation, uncertainty about initial 
cost was the principal driver of variation across the case studies. Other 
parameters, such as the predicted performance of pavement over time, 
could also be important drivers of variation and in particular a matter 
for lower-volume roads, for which thinner pavement designs are used. 
In terms of contextual decisions, some decisions, such as whether to use 
mechanistic–empirical pavement designs instead of the paving design 
manual of a state department of transportation to determine future 
maintenance events, seem to have a larger impact than do others. For 
example, analysis period and design life, though important, affect the 
final results significantly less, although in some instances they can play 
a role in differentiating between alternative designs.

Life-cycle cost analysis (LCCA) is an analytical framework to assess 
the most economically prudent investment from a set of alternatives 
over their respective lifetimes (1). Frequently, decision makers are 
faced with significant uncertainty in estimating future costs, in  
both the short term and long term; this uncertainty motivates a 
probabilistic perspective. As a result, different governmental agen-
cies, such as the FHWA and the Government Accountability Office 
(GAO), have strongly recommended a probabilistic approach be 
implemented in order to overcome the limitations of a deterministic 
analysis (1, 2).

With that said, the majority of departments of transportation 
(DOTs) implement LCCAs by treating inputs as single-point esti-
mates despite the availability of FHWA’s RealCost software to con-
duct a probabilistic analysis (3, 4). Clearly, practitioners appreciate 

the simplicity of the deterministic approach, which only requires 
considering one set of conditions that may arise in the future. This 
leaves decision makers, however, susceptible to comparing values 
that may not be appropriate if future conditions unexpectedly alter 
(5). This is an important issue given that cost overruns are a common 
characteristic across transportation projects (6–8).

One understandable reason that may explain the tendency to 
implement deterministic analyses is the significant time and effort 
to characterize the uncertainty for each input. Given that previous 
studies have primarily focused upon characterizing uncertainty for a 
limited set of parameters and applying models to a single case study, 
it is difficult for practitioners to extrapolate such results to their own 
particular scenario. The goal of this research, therefore, is to identify 
which parameters are important depending upon context, allowing 
practitioners to have a stronger sense of which parameters will likely 
matter for their particular analysis.

Literature review

The National Highway System Designation Act of 1995, which 
required states to conduct an LCCA for projects costing more than  
$25 million, is the major piece of legislation that sparked significant 
research efforts to improve the pavement LCCA methodology (9). 
Since then, the FHWA has played a lead role in promoting and fund-
ing LCCA research and efforts, leading to significant advancements 
(3). This includes the development of FHWA’s RealCost software 
that a large number of DOTs currently use in some capacity according 
to a recent survey by the GAO (10, 11).

Scope and Context across Previous  
Pavement LCCa Studies

Table 1 synthesizes some of the major contributions to pavement 
LCCA over the past decade. While not exhaustive, it provides a rep-
resentative sample of recent research efforts. Most of these studies 
implemented LCCA to support decisions when alternative strategies 
were being compared, and these strategies may include different 
materials [e.g., asphalt concrete (AC) versus portland cement con-
crete (PCC) pavements] or the same material (e.g., AC overlay versus 
full-depth AC reconstruction).

As Table 1 shows, a large portion of these studies have centered 
around rehabilitation and reconstruction rather than new pave-
ment construction, a response to a general movement from system 
expansion toward system preservation. Although all studies incor-
porate agency cost, less than half (seven of the 16) consider user 
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TABLE 1  Summary of Scope of Analysis for Some Recent Pavement LCCA Studies

Scope
Probabilistic LCCA

Project Type
Sources of Variation

Study New M&R
User 
Cost

AP 
(years) Traffic Location

Agency 
Cost

Input 
Quantity DR

Pavement 
Degradation Traffic

User 
Cost AP

Gransberg and  
 Molenaar (12)

 35 13,693 AADT British Columbia,  
 Canada;  
 Washington

Chan et al. (13)  25 27,000–53,000 AADT Michigan

Khurshid et al. (14)   na 873 AADTT Indiana

Lee et al. (15)   60 60,000 AADT California

Lee et al. (16)   60 137,500 AADT California

Pittenger et al. (17)  5–20 Unknown United States

Gschosser and  
 Wallbaum (18)

 75 3,000 ESALs per day Switzerland 

Lee et al. (19)   50 Unknown Wisconsin

Tighe (5)  30 Low to medium Ontario, Canada   — — — — —

Salem et al. (20)  30 872 ESALs per day Alberta, Canada — — —  — — —

Huang et al. (21)   70 Unknown Wisconsin — — * * — — —

Whiteley et al.  
 (22)

 30 Medium to high Ontario, Canada —  —   — — 

Guo et al. (23)   48 30,000 AADT Jiangsu, China  — * — *  —

Harvey et al. (24)  1–20 30 to 2,100 AADTT California — —    — 

Pittenger et al. (25)   2–12 na United States * — * * — — —

Swei et al. (26)  50 8,000 AADT, 300 AADTT Missouri   —  — — —

Note: Blank cell = item was not covered in study;  = item was covered in study; * = parameter is a major driver of variation (by calculation); — = parameter is deterministic; shaded area denotes  
deterministic studies for which uncertainty is ignored; M&R = maintenance and rehabilitation; AP = analysis period; DR = discount rate; AADT = annual average daily traffic; na = not applicable; 
AADTT = annual average daily truck traffic; ESAL = equivalent single axle load.
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cost (which is measured only by estimating the number of hours 
lost to users during road construction), illustrating the tendency to 
emphasize agency cost over cost to users (21, 23, 25). Last, and 
particularly important to this research, the context of the previous 
LCCA studies varies considerably, inhibiting one’s ability to draw 
any conclusions that find a consensus. This variation includes the 
analysis period (AP) (30 to 75 years for new construction and recon-
struction), traffic volumes (e.g., annual average daily traffic from 
slightly over 10,000 to over 100,000), metric of choice to measure 
traffic (qualitative descriptions, annual average daily traffic, annual 
average daily truck traffic, equivalent single axle loads), and cli-
matic locations. The pervasiveness of pavement LCCAs that vary 
measurably in scope and context is a testament to the complexity 
of pavement LCCAs, which explains the focus on methodological 
and characterization issues rather than on implementing a model in 
a range of contexts (13, 18, 20).

Probabilistic LCCas: what are  
the Drivers of variation?

Although all previously mentioned studies are significant contribu-
tions to the pavement LCCA literature, only some treat input values 
as probabilistic. Of those studies, a portion have calculated the 
drivers of variation by a sensitivity analysis or through the cor-
relation between input parameters and final life-cycle cost (LCC) 
through Monte Carlo simulations. The former presents a computa-
tionally simple (yet oftentimes effective) approach in which each 
input parameter is altered individually while the overall change in 
LCC is noted. The obvious drawback here is that any joint effects 
between multiple parameters are completely ignored, a situation 
with which the latter approach can deal (although, as expected,  
it adds a level of complexity). Interestingly, across those latter 
studies, uncertainties about discount rate and predicted service 
life tend to be key contributors when they are considered (5, 16, 24). 
Nevertheless, it is clear that the scope and sources of uncertainty 
considered are inconsistent, presenting an issue when the results 
are synthesized.

Gap analysis

The preceding discussion makes clear that earlier probabilistic LCCA 
studies have revolved around characterizing a select group of sources 
of uncertainty and variation. Although those studies are useful in 
helping researchers and practitioners understand ways of character-
izing input parameters, they provide minimal insight about their rela-
tive importance compared with the host of other input parameters. 

This importance, naturally, should vary in relation to (a) the con-
text (e.g., traffic), (b) the time at which the LCCA model is used 
in the decision-making process (e.g., before the collection of bids), 
and (c) the selection of discretionary inputs (e.g., AP), which have no 
fundamentally correct values yet define the scenario. Therefore, the 
important contribution from this work is numerical quantification of 
the parameters that matter as scope and context varies.

research Questions

The key questions this research explores in pavement LCCAs are 
these: What are the principal drivers of uncertainty? How sensitive 
are those drivers to the scenario and context? And how do deci-
sions when the scope of analysis is being framed affect the results 
of a comparative assessment? This research addresses these ques-
tions by developing a comprehensive LCCA model, characterizes 
sources of uncertainty and variation, and applies these values to a 
range of case studies.

MethoDoLoGy

To answer the questions asked in the previous section, a probabi-
listic LCCA model is constructed consistent with the methodol-
ogy developed and presented by Swei et al., as shown in Figure 1  
(26). First, the case studies presented consider only the cost to finance 
a project, ignoring all user costs previously analyzed (27–29). 
Second, the analysis implicitly assumes that a decision has already 
been made to build a new roadway, ignoring the underlying poli-
cies and impacts of a roadway on existing infrastructure (30). Last, 
because this study is a comparative assessment of pavement designs, 
all costs incurred irrespective of pavement design are ignored 
(e.g., land clearing).

Uncertainty around parameters related to the unit cost of con-
struction, future material prices, quantities of materials, and pave-
ment degradation has been characterized here similarly to those in 
Swei et al. (26), except that a more in-depth forecasting methodol-
ogy has been implemented to estimate future material prices (31). 
In addition, the implications of contextual variation in pavement 
LCCAs, including traffic volume, climate, initial design life (DL), 
and AP (which will be defined for this paper later), and discount 
rate are explored in this analysis by applying the model to a range 
of scenarios to quantify the following items:

1. The implications of a life-cycle perspective–probabilistic 
perspective,

Extraction and
  production
Transportation

On-site equipment
Labor and overhead

Materials
Construction

Pavement Removal
Landfilling
Recycling
Transportation

Materials Construction Maintenance End of Life

FIGURE 1  Simplified scope and boundary of LCCA study.
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2. The principal drivers of variation in LCCA in relation to 
context, and

3. The implications of scenario context in comparative assess-
ments.

Description of Scenario Space analyzed

After each source of variation and uncertainty is statistically quanti-
fied consistent with the methodology discussed in Swei et al. (26), 
the values are incorporated into 34 case studies. These case studies, 
presented in Table 2, vary in traffic volume (ranging in annual aver-
age daily truck traffic from 300 to 8,000) and in climatic regions 
(four). And within Missouri, both the DL (e.g., years until first major 
rehabilitation) and AP (e.g., number of years of the analysis) are 
varied. Furthermore, discount rate is varied by a sensitivity analysis 
to quantify its impact. For each scenario in Table 2, two analyses 
are conducted: one with a maintenance schedule derived from the 
DOT and a second based on a maintenance schedule derived from 
the AASHTOWare Pavement ME software.

For each one of these scenarios, two pavement rehabilitation 
schedules are considered: one that is consistent with current DOT 
practice for each state and another that is based on mechanistic–
empirical (pavement M-E) designs. The major difference between 
these two schedules generally is the expected year of rehabilita-
tion, with the former (DOT) generally predicting more frequent 
or earlier rehabilitations than do the pavement M-E designs. For 
example, the jointed plain concrete pavement (JPCP) for the 
design covering an urban Interstate highway with a 30-year DL 
actually has an expected first rehabilitation at Year 25 under cur-
rent DOT practice. The four states (Arizona, Colorado, Florida, and  
Missouri) were selected not only because of climactic differences but 
also because of local calibration efforts of pavement M-E through use 
of sections from FHWA’s Long-Term Pavement Performance pro-
gram. For each scenario, a hot-mix asphalt (HMA) and a JPCP alter-
native considered functionally equivalent are compared, as defined 
by Applied Research Associates, who developed the designs (31). 
The intention of the comparison is to understand which parameters are 
consistently the major sources of variation in analyses involving the 
two paving materials across the scenario space (and not necessarily 
to draw conclusions about which paving material is lower cost). 
Further information about the designs and LCCA input data used in 

the analysis can be found in supplementary information provided on 
the Concrete Sustainability Hub website (31).

Comparative assessment

To allow a fair comparison between pavement alternatives with likely 
different cash flows, all costs are converted to a net present value to 
allow equivalent time perspectives. The probabilistic economic cost 
is estimated through Monte Carlo simulations, by which random 
sampling is used to formulate a probability distribution of outcomes 
that accounts for correlation and dependencies, as described by Swei 
et al. (26). Results about total LCCs are compared on the basis of 
three metrics (Table 3). These metrics provide insight into (a) the 
relative mean difference between the alternatives, denoted as Δµ, 
(b) the difference between the alternatives from a risk-averse per-
spective, expressed as α90, and (c) the probability that one can be 
certain about which design has a lower–higher cost, symbolized as 
β. Figure 2 presents the graphical representation of the three com-
parison metrics. For each analysis, the JPCP and HMA alternatives 
have been designated as Designs A and B, respectively.

To characterize the parameters that significantly contribute to the 
overall variance, the contribution to variance to the total LCC for 
each parameter is estimated by use of the Pearson correlation coef-
ficient (rx,y), a statistical measure of the dependency between two 

TABLE 2  Scenarios in Case Study Analysis

DL, AP by Long-Term Pavement Performance Climate Zone

Traffic Level
Wet–Freeze  
(Missouri)

Dry–No Freeze 
(Arizona)

Dry–Freeze  
(Colorado)

Wet–No Freeze 
(Florida)

Local street–highway (rural), 20, 50 na na na
 AADTT = 300 30, 50

State highway (rural), 20, 50 30, 50 30, 50 30, 50
 AADTT = 1,000 30, 50 na na na

40, 50 na na na

Interstate (urban), 20, 30 30, 50 30, 50 30, 50
 AADTT = 8,000 20, 50 na na na

30, 50 na na na
30, 75 na na na
50, 75 na na na
50, 100 na na na

TABLE 3  Metrics Used for Comparative Assessment

Metric Meaning

B A

A

∆ =
−

µ
mean cost mean cost

mean cost
Relative mean difference between 

Design A and Design B

B A

A

α =
−90% cost 90% cost

90% cost
90

Relative 90th percentile difference 
between Design A and Design B

B A

A

β =
−

>





probability
cost cost

cost
0

Percentage of Monte Carlo 
simulation in which Design B 
has a higher cost than Design A. 
Values greater than 0.9 (or less 
than 0.1) indicate Design A  
(or Design B) cost less with 
statistical significance.
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variables, for each input. From the Monte Carlo simulations, the 
correlation between each input variable and the final output can be 
calculated as
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where xi and yi are numerical values of an input (x) and total LCC (y) 
for simulation i and mx and my are average values of x and y across 
the full sample.

The contribution to variance for each input variable is estimated 
by squaring the Pearson correlation coefficient (r2

x,y) and normal-
izing r2

x,y such that the summation across all inputs equals one. This 

result is an approximation of the contribution to variance and is not 
precisely a variance decomposition.

SCenario anaLySiS reSuLtS

implications of Life-Cycle– 
Probabilistic Perspective

Table 4 presents the comparative results for initial cost and LCC (on 
the basis of pavement M-E and DOT) for the HMA pavement and 
the JPCP that assume a 30-year DL and a 50-year AP. The results 
clearly show the magnitude of the impact that both the inclusion 
of maintenance costs and the methodology have on the results. 
For example, on the basis of initial cost, only three instances with a 
statistically significant difference between the designs (e.g., β > .9 or  
β < .1) favor the HMA alternatives, whereas implementing an LCC 
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FIGURE 2  Plot of (a) cumulative distribution LCC of two pavements (with dashed lines representing mean 
values) and (b) probability distribution of b for same cumulative distribution.

TABLE 4  Initial and LCC Results for Each Scenario with DL of 30 Years and AP of 50 Years on Basis of Pavement M-E and DOT Schedule

Percentage by LTPP Climate Zone and Metric

Wet–Freeze (Missouri)
Dry–No Freeze 
(Arizona) Dry–Freeze (Colorado)

Wet–No Freeze 
(Florida)

Traffic Level Scope Δµ α90 β Δµ α90 β Δµ α90 β Δµ α90 β 

Local street–highway, Initial −40 −37  0 na na na na na na na na na
 AADTT = 300 LCC—M-E −32 −33  0 na na na na na na na na na

LCC—DOT −20 −20  1 na na na na na na na na na
State highway (rural), Initial −22 −24  3 −33 −35  8 16 29 71 −41 −64 22
 AADTT = 1,000 LCC—M-E −12 −14 17 −14 −20 29 27 29 82 −29 −49 33

LCC—DOT −4 −3 48 9 6 69 50 54 95 11 −18 68

Interstate (urban), Initial 15 29 76 −1 −7 49 18 22 69 16 −14 62
 AADTT = 8,000 LCC—M-E 22 30 86 15 10 70 23 36 75 23 −6 71

LCC—DOT 30 36 95 34 24 91 42 42 93 63 21 90

Note: Δµ = percentage of difference at mean; α90 = percentage of difference at 90th percentile; β = percentage of simulations in which Design B (HMA in scenarios) has 
a higher cost; black background = HMA has statistically significant lower impact; gray background = JPCP has statistically significant lower impact; LCC = life-cycle 
cost; M-e = pavement M-E methodology.
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with a DOT-based maintenance schedule leads to five instances for 
which the difference is statistically significant, but these all now 
favor the JPCP alternatives. In contrast, when the mean differences 
are compared, four instances show that HMA has a lower cost on 
the basis of initial costs, four instances when LCC is used with the 
pavement M-E methodology, but only two instances when LCC 
is calculated with the DOT rehabilitation schedule. On average, 
the mean difference between the initial cost alternative and when 
LCC with pavement M-E and DOT maintenance schedules was 
used was 11% (M-E) and 32% (DOT); these results indicate that 
both a life-cycle perspective alters decisions, and, furthermore, 
that the degree of change depends on the pavement performance 
methodology. The reasons for this difference are that (a) pavement 
M-E estimated, on average, that fewer rehabilitations were needed 
for both alternatives relative to the DOT estimates, and (b) reha-
bilitation costs were significantly larger for the HMA alternatives. 
Future research should evaluate the optimal way to balance initial 
cost expenditures and frequency of future rehabilitations by an 
optimization-based approach to gain a better understanding of this 
relationship.

An added value of a probabilistic analysis is that it allows a deci-
sion maker to evaluate alternative pavement designs on the basis of 
their risk profiles. Ten instances (italicized) in Table 4 display shifts 
of at least 10% in the difference between the alternatives when the 
comparison from the mean difference (Δµ) to the 90th-percentile 
difference (α90) is modified. Six of those instances occur in Florida 
and, as will be noted later, have significant uncertainty surrounding 
initial cost characterization for the JPCP alternatives, which results 
from the lack of available historical empirical data. Therefore, for 
cases with a high level of uncertainty for a particular significant 
input, the competitiveness of an alternative can considerably shift 
in relation to the risk profile.

Principal Drivers of variation in LCCa  
that Depend on Context

Table 5 presents the parameters with the highest contribution to 
the cost variation of each alternative and the differential LCC 
when correlation (by using the approach based on pavement M-E) 

TABLE 5  Parameters for Major Sources of Variation for 50-Year AP, 30-Year DL, and Pavement M-E Scenarios

Percentage by LTPP Climate Zone

Traffic Level Parameter
Wet–Freeze 
(Missouri)

Dry–No Freeze 
(Arizona)

Dry–Freeze 
(Colorado)

Wet–No Freeze 
(Florida) 

Local street (rural), HMA alternative HMA na na na
  AADTT = 300   Pavement–M-E reliability .26 na na na

  Aggregate price .16 na na na
  AC surface price .00 na na na
  AC binder price .16 na na na
JPCP alternative JPCP na na na
  JPCP layer price .78 na na na
Difference Difference na na na
  JPCP layer price .84 na na na
  Aggregate price .00 na na na
  AC surface price .02 na na na
  AC binder price .05 na na na

State highway (rural), HMA HMA HMA HMA HMA
  AADTT = 1,000   Pavement–M-E reliability .15 .06 .01 .13

  Aggregate price .17 .04 .06 .01
  AC surface price .18 .18 .11 .27
  AC binder price .15 .52 .75 .50
JPCP JPCP JPCP JPCP JPCP
  JPCP layer price .91 .98 .95 .99
Difference Difference Difference Difference Difference
  JPCP layer price .74 .67 .29 .92
  Aggregate price .00 .00 .00 .00
  AC surface price .05 .09 .13 .01
  AC binder price .07 .17 .23 .03

Interstate (urban), HMA HMA HMA HMA HMA
  AADTT = 8,000   Pavement–M-E reliability .08 .06 .10

  Aggregate price .16 .07 .01 .00
  AC surface price .25 .13 .06 .31
  AC binder price .38 .10 .16 .11
  AC base price .01 .43 .64 .28
JPCP JPCP JPCP JPCP JPCP
  JPCP layer price .82 .96 .95 .99
Difference Difference Difference Difference Difference
  JPCP layer price .19 .56 .32 .85
  Aggregate price .13 .01 .01
  AC surface price .20 .04 .03 .04
  AC binder price .31 .04 .11 .02
  AC base price .02 .23 .55 .04
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is taken into account. Importantly, the results clearly demonstrate 
that, although several parameters are sources of uncertainty, only a 
few affect the immediate decision. For the JPCP designs, the unit 
price of the JPCP layer constitutes the majority of the variance 
across the case studies. An obvious future area of work for a state 
such as Florida is evaluation of potential ways to estimate unit cost 
variation for paving activities that lack data. For the HMA designs, 
the unit price of the aggregate and asphalt layer inputs, in addition 
to uncertainty about the year of maintenance and the frequency 
(denoted as pavement M-E reliability) are all significant sources 
of variation, the latter the result of higher expected rehabilitation 
costs. When the major contributions to variance are estimated dur-
ing calculation of the LCC difference, the uncertainty in material 
unit price across the scenarios is the most important factor driving 
variation in the cost difference of the alternatives. Other parameters 
that have been correlated, such as pavement M-E reliability, have 
a smaller impact.

Although the previous analysis treated discount rate as a deter-
ministic parameter, a sensitivity analysis was conducted with the dis-
count rate varying between 1% and 7%. As Table 6 shows, the relative 
mean (Δµ) and 90th-percentile (α90) difference shifts, on average, by 
12% and 14%, respectively, in favor of the HMA, when the discount 
rate is moved from its low to its high extreme.

implications of Scenario Context

The final question is related to the impact of the scenario context on 
LCCA outcomes, specifically the AP and DL. As Table 7 shows, 
the local-street case study has a design life that leads to the larg-
est change in the mean difference between the two designs (11%), 
whereas it has a smaller impact on the state highway case study 
(4%). As for the Interstate highway case study, the shift between the 
mean and the 90th-percentile differences is quite small across the 
DLs and APs. However, very interestingly, the frequency for which 
the JPCP costs less than the HMA steadily increases from 83% in 
the 30-year AP case study to 100% in the 100-year AP scenario (for 
β values). This trend suggests that increasing AP may not neces-
sarily shift the mean difference significantly but can lead one to be 

more (or potentially less) confident that a design will cost less than 
its alternative.

ConCLuSionS anD Future work

This research has implemented a probabilistic LCCA model that 
accounts for several forms of uncertainty in the LCCA of pavements, 
specifically the maintenance schedules, initial and future material 
and construction costs, and material quantity. The model has been 
applied to a range of case studies that vary in scope for AP, DL, 
rehabilitation schedule (pavement M-E versus DOT based), location, 
traffic volume, and discount rate.

Results from the scenario analysis have illuminated several 
conclusions. First, a life-cycle approach can alter the lower-cost 
pavement, and if it does not, can tremendously shift the differ-
ence between alternative designs. Second, the lower-cost pavement 

TABLE 6  LCC Results for Each Scenario with Design Life of 30 Years and AP of 50 Years on Basis of Pavement M-E–Based  
Rehabilitation Schedule While Varying Discount Rate

Percentage by LTPP Climate Zone and Metric

Wet–Freeze (Missouri)
Dry–No Freeze 
(Arizona)

Dry–Freeze 
(Colorado)

Wet–No Freeze 
(Florida)

Traffic Level Scope Δµ α90 β Δµ α90 β Δµ α90 β Δµ α90 β

Local street–highway, 1% DR −29 −27  0 na na na na na na na na na
 AADTT = 300 State DR −32 −33  0 na na na na na na na na na

7% DR −33 −36  0 na na na na na na na na na

State highway (rural), 1% DR −4 −5 38 1 −4 56 31 40 87 −21 −42 41
 AADTT = 1,000 State DR −12 −14 17 −14 −20 29 27 29 82 −29 −49 33

7% DR −14 −17  9 −26 −26 18 21 25 78 −35 −54 28

Interstate (urban), 1% DR 27 37 91 24 19 78 33 41 80 28 5 73
 AADTT = 8,000 State DR 22 30 86 15 10 70 23 36 75 23 −6 71

7% DR 17 25 81 8 0 61 22 29 73 18 17 69

Note: Black background = HMA has statistically significant lower impact; gray background = JPCP has statistically significant lower impact.

TABLE 7  LCC Results for Each Scenario Obtained  
with Pavement M-E–Based Rehabilitation Schedule  
While Varying Design Life and Analysis Period

Traffic Level DL/AP
Δµ 
(%)

α90 
(%)

β 
(%)

Local street–highway, 20/50 −32 −34 0
 AADTT = 300 30/50 −21 −22 0

State highway (rural), 20/50 −13 −15 11
 AADTT = 1,000 30/50 −12 −14 17

40/50 −9 −11 21

Interstate (urban), 20/30 18 25 83
 AADTT = 8,000 20/50 23 30 89

30/50 22 30 86
30/75 21 27 90
50/75 21 27 90
50/100 20 29 100

Note: Black background = HMA has statistically significant 
lower impact; Gray background = JPCP has statistically  
significant lower impact.
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alternative at different risk profiles will vary; this conclusion indi-
cates that a probabilistic approach, in some instances, will alter the 
decision relative to a deterministic approach. Third, in relation to 
the drivers of variation, for the JPCP design the estimation of the 
initial bid price is the major source of uncertainty. This finding was 
particularly true in the case of Florida because of limited empirical 
data and suggests that further research evaluate this topic. For the 
HMA designs, although uncertainty about initial cost still plays an 
important role, future maintenance events are also a major source 
of uncertainty. Fourth, certain discretionary decisions that affect 
the context of the analysis alter the immediate decision more than 
others. For example, the decision to use pavement M-E design 
rather than a paving design manual from a state DOT to deter-
mine future maintenance events has tremendous implications. In 
contrast, other decisions, such as AP and DL, although important, 
affect results significantly less. However, although that effect may 
be less, it can be sufficiently large to differentiate the alternatives 
in some instances (as in the urban Interstate highway case study).

Several opportunities exist to extend this research. Most impor-
tant, this analysis used a comparative-assessment approach for two 
“functionally equivalent” pavement designs (as defined by consul-
tants hired to perform this work). Future work should move from 
the traditional comparative approach to an integration of design and 
cost that would allow the cost consequences of pavement design 
alterations to be directly modeled.

Furthermore, multiple opportunities that could be a part of future 
work are available to enhance the model developed in this analy-
sis. For one, a major limitation of this analysis is the application of 
its methodology to a scenario assuming that future rehabilitation 
activities are fixed, irrespective of future market conditions. For 
example, a future rehabilitation activity would likely either change 
or be delayed, if material prices were significantly higher than 
expected. The LCCA model should account for the flexibility of a 
decision maker to change future actions in response to future events, 
a current drawback of the analysis here. In addition, the scope of the 
analysis here focuses only on the cost to finance a roadway. This 
model should be expanded to include the user costs associated with 
a pavement decision.
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