The CSHub has long investigated multifunctional concrete, and has uncovered a way to store energy in a mixture of carbon black, cement, and water. The technology has potential applications towards bulk energy storage, on-road EV charging, self-heating pavements, energy-autarkic structures, and more.
News
- MIT News: MIT conductive concrete consortium cements five-year research agreement with Japanese industry (May 2024)
- MIT engineers create an energy-storing supercapacitor from ancient materials (MIT News, July 2023)
- Is cement the solution to storing renewable energy? Engineers at MIT think so. (Boston Globe, August 2023)
- Energy-storing concrete could form foundations for solar-powered homes (NewScientist, July 2023)
Research Briefs
- Next-generation concrete: Combining loadbearing and energy storage solutions (September 2024)
- Early-Stage Building Lifecycle Optimization of Cost & Carbon Impact (April 2021)
Publications
- Chanut, N., Stefaniuk, D., Weaver, J. C., Zhu, Y., Shao-Horn, Y., Masic, A., & Ulm, F. J. (2023). Carbon–cement supercapacitors as a scalable bulk energy storage solution. Proceedings of the National Academy of Sciences, 120(32), e2304318120.
- Soliman, N. A., Chanut, N., Deman, V., Lallas, Z., & Ulm, F. J. (2020). Electric energy dissipation and electric tortuosity in electron conductive cement-based materials. Physical Review Materials, 4(12), 125401.