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As a crucial part of the transportation system, roadway network provides mobility to the society and is
vital for the economy. At the same time it contributes significantly to the environmental footprint during
its construction, operation and maintenance. Hence, the sustainable development of our Nation's
roadway system requires quantitative means to link infrastructure performance to lifecycle energy use
and greenhouse gas emissions. Recent developments in mechanistic models of roughness- and
deflection-induced pavement-vehicle interaction aim at providing such engineering estimates. Herein, it
is demonstrated that these models when implemented at a network scale are a powerful basis for big
data analytics of excess-energy consumption and carbon dioxide emissions by integrating spatially and
temporally varying road conditions, pavement properties, traffic loads and climatic conditions. A novel
ranking algorithm is proposed, that allows upscaling of the local carbon dioxide emissions due to
pavement vehicle interaction to the size of state-wide or national sustainability goals. Implemented for
5157 lane-miles of the interstate highway system in the State of Virginia, sections contributing signifi-
cantly to carbon dioxide emissions are identified. It is shown that the proposed ranking algorithm based
on the inferred emission that exhibits a power-law distribution, provides the shortest path for green-
house gas emissions savings per maintenance at network scale. That is, maintaining a few lane miles
allows for a significant synergetic improvement of both infrastructure performance and environmental
impact of the interstate network and helps transportation agencies in making economic and environ-
mentally sustainable decisions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Accounting for 28% of the total United States greenhouse gas
(GHG) emissions, the transportation sector, was the second largest
contributor to the GHG emissions in 2012 (EPA, 2012). With more
than four millionmiles of public roads, andwith generation of 6526
million metric tons of Carbon Dioxide (CO2) and total fuel con-
sumption of around 168 billion gallons (FHWA, 2012) the US
roadway network has a significant impact on the environment.
Pavement condition, design and characteristics affect vehicle fuel
consumption and the relating CO2 emissions (Gyenes and Mitchell,
1994; Chatti and Zaabar, 2012). Thus maintaining the Nation's
roadway network at good conditions, besides enhancing roadways
performance, results in a more sustainable transportation system.
However, by some estimates (U.S. Department of Transportation,
m, A., et al., Carbon managem
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Federal Transit Administration, 2013) maintaining the national
highways at their current condition requires spending annually $95
to $109 billion during 2014 and 2020 respectively. The cost would
increase to $161.7 and $184.2 billion to improve the condition.
Given the limited financial resources of federal and state trans-
portation agencies for road maintenance along with the initiatives
for sustainable development, it is critical to develop fast and ac-
curate frameworks for identifying the roads with higher environ-
mental footprint, and to establish strategies for selecting pavement
sections for maintenance that maximize investment returns in
terms of the total network-level environmental impact.

While the environmental impact of material production
(Huntzinger and Eatmon, 2009) and pavement construction and
maintenance phases (Turk et al., 2016; Huang et al., 2009;
Fern�andez-S�anchez et al., 2015) are widely studied in Life Cycle
Assessment (LCA) of pavements, the use-phase impact is generally
omitted in most of pavement LCA tools (Santero et al., 2011).
Considering the fact that the impact of use phase for high volume
ent of infrastructure performance: Integrated big data analytics and
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traffic roads is significant and can surpass other embodied emis-
sions (Wang et al., 2012; Araújo et al., 2014) the need to close this
gap is evident.

Rolling resistance e due to pavement roughness, texture
(Sandberg et al., 2011) and deflection e can contribute 15%e50% to
the total vehicle fuel consumption, depending on vehicle speed
(Beuving et al., 2004), and is one of the main factors in pavement's
use-phase environmental footprint. Although small for a single
vehicle, the aggregated impact for pavement sections with high
traffic volume can exceed other factors contributing to the lifecycle
footprint of pavements (Wang et al., 2012; Noshadravan et al.,
2013). Pavement-vehicle-interaction (PVI) models quantitatively
assess this footprint by taking into account the impact of different
pavement characteristics and designs, and existing climatic and
traffic conditions in the roadway network, on the energy dissipa-
tion and the ensuing excess fuel consumption. These models are
thus important components in evaluating pavement sustainability
performance. Furthermore, when combined with information at
the network level, they can serve as a means to guide carbon
management policies aiming at reduction of CO2 emissions in
roadway networks.

Herein, an approach is proposed that integrates roughness- and
deflection-induced PVI models with various databases, which are
available to transportation agencies, to identify pavement sections
with the greatest potential for CO2 emissions reduction at the
network scale. By way of example, using big data analytics, the
spatial and temporal variation of CO2 emissions in the network of
Virginia interstate highways due to the change in road condition
and design is investigated, while considering variation in climatic
conditions and traffic loads. In addition, a ranking algorithm for
network maintenance strategy is proposed that results in both
maximum reduction of use-phase CO2 emissions at the network
scale and improvement of infrastructure performance
simultaneously.

2. Pavement-vehicle-interaction (PVI) models

The first step in development of a framework for an optimal
maintenance strategy is to quantify the impact of pavement char-
acteristics, environmental conditions and vehicle properties on
excess vehicle fuel consumption and the corresponding CO2 emis-
sion. While empirical investigations highlight the existence of
correlation between fuel consumption and pavement structural
(Taylor, 2002; Taylor and Patten, 2006; Gsch€osser and Wallbaum,
2013), and surface properties (Taylor et al., 2000; Zaniewski et al.,
1982), until recently the link between several pavement charac-
teristics and vehicle fuel consumption was missing. Newly devel-
oped deflection-induced (Pouget et al., 2011; Louhghalam et al.,
2013) and roughness-induced PVI models (Chatti and Zaabar,
2012; Velinsky and White, 1980; Louhghalam et al., 2015) aim at
closing this gap by establishing a link between mechanical prop-
erties of pavements and vehicle fuel consumption.

The underlying concept behind the PVI models is that to
maintain a constant speed, the dissipated energy due to rolling
resistance must be compensated by extra engine power which re-
sults in excess vehicle fuel consumption and GHG emissions.
Deflection- and roughness-induced PVI models respectively ac-
count for the dissipation of energy in pavement material and
vehicle suspension system. The impact of pavement texture on
vehicle fuel consumption has not taken into account in the network
analysis due to lack of available information.

2.1. Deflection-induced PVI

The recently developed deflection-induced PVI (Louhghalam
Please cite this article in press as: Louhghalam, A., et al., Carbon managem
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et al., 2013) provide a means to quantitatively assess the impact
of pavement characteristics (e.g., subgrade modulus, pavement
thickness, stiffness and viscosity) and climatic conditions on
vehicle fuel consumption.

The key underlying principal behind deflection-induced PVI is:
the energy dissipated within pavement material due to its visco-
elasticity must be compensated by an external energy source,
leading to excess fuel consumption. Using the first and second laws
of thermodynamics, it is shown that the dissipated energy per
distance travelled dε is directly related to the slope underneath the
wheel in a moving coordinate system that is attached to and
traveling with the tire with speed V, i.e. dE ¼ �Pdw=dX, where P is
the axle load, dw/dX is the average slope at tire-pavement trajectory
in the moving coordinate system X ¼ x�Vt, with x and t denoting
coordinates of space and time in a fixed coordinate system
(Louhghalam et al., 2013). It is worth noting that in this coordinate
system, the maximum deflection of an elastic material subjected to
a moving tire occurs exactly under the tire. That means the average
slope, thus the deflection-induced energy dissipation is zero for an
elastic material, which is in agreement with the laws of
thermodynamics.

The pavement is modeled as an infinite viscoelastic beam on an
elastic foundation subjected to an axle load traveling with a con-
stant speed V in steady-state condition. The constitutive relation
between stress s and strain ε of the viscoelastic material is
described by a Maxwell model, ðsþ t _sÞ=E ¼ t _ε, with the Young's
modulus E and relaxation time t ¼ h/E, where h is the material
viscosity and the superposed dot denotes time derivative. The dif-
ferential equation of beam's displacement w in the moving coor-
dinate system:

Eh3

12
d4w
dX4 þmV2d

2w
dX2 þ kw ¼ p (1)

with h pavement thickness, k subgrade stiffness andm surfacemass
density, is solved in the frequency domain, by using the elastic-
viscoelastic correspondence principle (Christensen, 1982). The
average slope at the tire-pavement trajectory and ultimately the
energy dissipation within the material is evaluated (see
Louhghalam et al. (2013) for detailed solution).

Substituting this involving mathematical procedure with an
accurate and computationally efficient expression is the next
crucial task in developing models that are practical for big data
analytics of network-scale analysis. This is achieved by rationalizing
the problem through a dimensional analysis of physical quantities
involved in the dissipated energy per distance travelled, dε, namely
subgrade stiffness k, pavement stiffness E, thickness h, width b, and
relaxation time t, as well as temperature T, vehicle axle load P and
speed V. The analysis allows for further reduction of the problem to
a 2-parameter relation between the dimensionless dissipation P ¼
dE Vbkl2s =VcrP2 and dimensionless vehicle speed V/Vcr and relaxa-
tion time tVcr/ls using BuckinghamP-theorem Buckingham (1914):

P ¼ dE Vbkl2s
VcrP2

¼ F

�
P1 ¼ Vcr

V
;P2 ¼ tVcr

ls

�
(2)

with Vcr ¼ lsk/m, and ls ¼ ðEh3=12kÞ1=4 the Winkler length of the
beam. The analysis above also provides scaling relationship of en-
ergy dissipation with different pavement mechanical properties,
vehicle characteristics and temperature:

dE fðVtÞ�1 � P2 � E�1=4 � h�3=4 � k�1=4 (3)

Note that the functional relation F in expression (2) cannot be
evaluated using the P-theorem and must be determined by
ent of infrastructure performance: Integrated big data analytics and
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Table 2
Coefficients bc and gc for medium cars and heavy trucks used in (7).

Vehicle type bc gc

Medium car 1.2098e�3 2.8190e�2

Heavy truck 4.4461e�3 1.9899e�2
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numerical simulation. To this end for a wide range of practical
dimensionless variables P1 and P2 (0.03 < P1 < 0.5 and
0.0001 < P2 < 12000) in (2) the equation of motion (1) is numer-
ically solved and the average slope and the dimensionless dissi-
pations is evaluated. Ultimately a surrogate model is presented by
fitting a 2-dimensional surface (with coefficient of variation
R2 ¼ 0.97) to the exact numerical solution (see Louhghalam et al.
(2014) for details):

log10dE ¼ 3� log10
Vbkl2s
P2Vcr

þ
X5
i¼0

X3
j¼0

pij

�
V
Vcr

�i

�
�
log10

tðTÞVcr

ls

�j

(4)

The regression coefficients pij along with the 95% confidence
intervals are given in Table 1. Finally the instantaneous fuel con-
sumption associated with this dissipation is evaluated as
dIFCD ¼ dE =zf , with zf the energy content of fuel equal to 34.84 and
38.74 Megajoules (MJ) per liter for gasoline and diesel respectively
(EPA, 2004).

The temperature sensitivity of the dissipated energy is due to
the temperature dependency of relaxation time t(T) of the visco-
elastic material leading to a variation of the complex stiffness.
Time-temperature superposition principal is used to take into ac-
count this impact and to evaluate the relaxation time of the linear
viscoelastic material at any given temperature T in terms of the
relaxation time at a reference temperature T0, i.e., t(T) ¼ t(T0) aT.
The shift factor aT for bituminous and cementitious materials are
respectively obtained from the empirical relationship of William-
Landel-Ferry (Williams et al., 1955):

log aT ¼ �c1ðT � T0Þ
c2 þ ðT � T0Þ

(5)

with constants c1 ¼ 34, c2 ¼ 203+ K and the reference temperature
T0 ¼ 283� K (Pouget et al., 2011), and the Arrhenius law (Arrhenius,
1889):

log aT ¼ Uc

�
1
T
� 1
T0

�
(6)

with Uc ¼ 2700� K (Bazant, 1995). The characteristic relaxation time
at the reference temperature T0¼10� C is obtained by calibration of
the model against the results of a three-dimensional model re-
ported by Pouget et al. (2011) and is equal to 0.0083 s (see
Louhghalam et al. (2014) for the details of model calibration and
validation).
2.2. Roughness-induced PVI

The impact of road roughness on excess CO2 emissions is
quantified using the Highway Development Management-4 (HDM-
4) model, which is a vehicle operating cost model originally
developed by the World Bank (Bennett and Greenwood, 2001) and
Table 1
Coefficients pij used in (4) with the 95% confidence intervals.

j i

0 1 2

0 �1.918 (�1.922, �1.915) 4.487 (4.379, 4.596) �19.54 (�20.64, �18
1 �0.4123 (�0.4135, �0.4111) �1.802 (�1.824, �1.78) 4.014 (3.864, 4.163)
2 �0.06942 (�0.06969, �0.06915) 0.2153 (0.2111, 0.2194) �0.8618 (�0.8794, �
3 �0.009575 (�0.009656,�0.009495) 0.0203 (0.0196, 0.021) 0.04669 (0.04542,0.0
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later calibrated for the United States vehicle conditions by Chatti
and Zaabar (2012). The HDM-4 model uses the International
Roughness Index (IRI) as the metric for road roughness. IRI is
defined as the accumulated suspension motion of the golden-car (a
2-degree of freedom quarter-car with specific inertial and stiffness
properties) traveling at a speed of 80 km/h per distance traveled. IRI
has unit of slope (m/km) (Sayers et al., 1986) and is usually evalu-
ated from road roughness profile measurements. The HDM-4
model uses other input parameters such as vehicle class and
speed in addition to IRI and provides an estimate for the increase in
vehicle instantaneous fuel consumption dIFCR with IRI for five
different vehicle classes, namely medium car, SUV, van, light truck
and articulated truck. Using the HDM-4 model, for the practical
ranges of vehicle speed and pavement IRI values (30 < V (Km/
h) < 130 and 0< IRI (m/Km) <6), an expression is developed for the
roughness-induced excess fuel consumption in liter per kilometer:

dIFCR ¼ bchIRI� IRI0i
�
1þ gc

V
3:6

�
(7)

where 〈x〉 ¼ x if x > 0, otherwise 〈x〉 ¼ 0, and the coefficients bc and
gc are given in Table 2 for the two vehicle classese namelymedium
car and heavy truck e that are used in the network-scale analysis in
Section 4. Similarly the coefficients can be evaluated for other
vehicle classes used in the HDM-4 model. In the above equation,
IRI0 is the reference roughness index after maintenance. The
magnitude of reference IRI0 is a pavement management policy
decision of the roughness of new pavements and is selected to be
1 m/km herein, to remain consistent with the baseline used in the
calibrated HDM-4 model (Chatti and Zaabar, 2012).

Validation of the mechanics-based models discussed above us-
ing both controlled experiments and field measurements is part of
authors' ongoing research efforts (Coleri et al., 2015) where it has
been shown that the excess fuel consumption estimates obtained
through these models are generally in agreement with other PVI
models that are computationally intensive and thus not intended
for integration with big data and network level analysis.

The CO2 emissions associated with vehicle fuel consumption are
evaluated from CO2 content of fuel reported as 2.322 and 2.664 kg
per liter by EPA for gasoline and diesel, respectively (EPA, 2005).
3. Databases

Data for the network-scale analysis comes from a variety of
sources. Information on pavement condition and design in the state
of Virginia was obtained from the Virginia Department of Trans-
portation (VDOT) and the Virginia Center for Transportation
3 4 5

.44) 59.58 (54.61, 64.55) �92.51 (�102.6, �82.39) 56.23 (48.63, 63.83)
�4.628 (�5.04, �4.217) 1.375 (0.9895, 1.761) e

0.8441) 0.7344 (0.7124,0.7563) e e

4797) e e e
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Table 3
Pavement types and their corresponding length in Virginia interstate highways.

VA labels Pavement type Lane-mile Center-mile

BIT Asphalt (AC) 3131 1416
JRCP Concrete (PCC) 360 119
CRCP Concrete (PCC) 382 143
BOJ Composite (CMP) 854 294
BOC Composite (CMP) 430 183
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Innovation and Research (VCTIR). The data consists of structural,
material and surface properties of pavement sections along with
their mileposts for five pavement types comprising the interstate
highways, namely Bituminous (BIT), Joint Reinforced Concrete
Pavement (JRCP), Continuous Reinforced Concrete Pavement
(CRCP), Bituminous over JRCP (BOJ) and Bituminous over CRCP
(BOC). The corresponding length of each pavement type in the
network of Virginia interstate highways is summarized in Table 3.
For each pavement section the dataset includes section identifier,
milepost, pavement thickness, pavement and subgrade moduli
along with measured IRI values. Pavement and subgrade moduli
provided by Virginia Center for Transportation Research are ob-
tained by back-calculation using the results of Falling Weight
Deflectometer (FWD) testing which has been implemented at the
network level by VDOT (Galal et al., 2007; Diefenderfer, 2010). In
addition to these pavement properties, the data set also includes
the annual average daily traffic (AADT) and truck traffic (AADTT) for
seven years (2007e2013) for the entire interstate system. To match
this data with its geographical location via Geographical Informa-
tion System (GIS) (ArcGIS 10.2.2), the basemap of VA interstate
highways from Federal Highway Administration's National Plan-
ning Network (NHPN, 2013) is used along with pavement section
mileposts (see the Supporting information for the maps of IRI,
pavement type and traffic).

The temperature data is obtained from the dataset of National
Oceanic and Atmospheric Administration (NOAA) in the form of
average monthly temperatures for six different climatic regions
comprising the state of Virginia. Pavementmileposts enable finding
the climatic regions and thus temperature variations for all
Fig. 1. Flow of network analysis; the inputs and the outp

Please cite this article in press as: Louhghalam, A., et al., Carbon managem
pavement-vehicle-interactions, Journal of Cleaner Production (2016), htt
pavement sections in the interstate highway network.
The information on vehicle speed in VA interstate highways is

inferred from the Weigh In Motion (WIM) data provided by VDOT.
The dataset consists of axle weight, gross vehicle weight and
vehicle speed. The measured vehicle speeds are used to estimate
speed probability density function (PDF) in Virginia interstate
system. It is observed that the vehicle speeds in the network follow
a Gaussian distribution with a mean value of 103.93 km/h and a
standard deviation of 7.52. The Gaussian PDF is later used for a
Monte-Carlo simulation in the network-scale analysis.
4. Network-scale analysis

Fast and straightforward implementation of PVI models pro-
vides a convenient tool to upscale pavement section emissions to
the network scale environmental impact. To this end, the compo-
nent level PVI models are integrated with the datasets described
above to perform a network-level analysis. The flowchart of the
network analysis illustrated in Fig. 1 summarizes how the data sets
described in the previous section provide the inputs to the PVI
models. The indicator of pavement roughness (IRI) and vehicle
speed are the inputs to the roughness-induced PVI model (Equation
(7) and Table 2), whereas pavement structural and material prop-
erties, temperature and vehicle speeds are used to estimate the
deflection-induced energy dissipation and the relating CO2 emis-
sions (Equation (4) and Table 1).

To take into account the uncertainty associated with vehicle
speed and its impact on the excess fuel consumption due to
pavement roughness and deflection, a Monte-Carlo Simulation is
performed. For each road section inverse transformation sampling
is used to generate 1000 samples of vehicle speed according to the
Gaussian PDF obtained from the WIM data (i.e. a set of 1000 in-
dependent uniformly distributed random variables, U ¼ u[0,1] is
generated and the inverse of the Gaussian cumulative distribution
function (CDF) at U, X ¼ F�1

V ðUÞ, is calculated) and evaluate the 95
percentile of the CO2 emissions.

The structural and material data for this study were available
from the Virginia Department of Transportation. However for cases
where data is not available, an approach similar to the above can be
ut of deflection- and roughness-induced PVI models.

ent of infrastructure performance: Integrated big data analytics and
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Fig. 2. Spatial distribution of roughness- and deflection-induced excess CO2 emissions in 2013 in the network of Virginia interstate highways.
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used to find the confidence bounds of fuel consumption using the
probability distributions of material and structural properties ob-
tained either at the local level or at more global level, e.g., from the
database of Long Term Pavement Performance (LTPP) program.
5. Results and discussion

The total annual contribution of roughness- and deflection-
induced CO2 emissions is studied separately for two classes of vehi-
cles (passenger cars and five-axle trucks) and by aggregating the
annual passenger-car and truck traffic volumes within the network.
Distributionof the total excessCO2 emissions in the roadwaynetwork
in 2013 is shown in Fig. 2; the spatial variation of the excess CO2
emissions in 2013 for medium cars and heavy trucks and for each of
the dissipation mechanism are presented in the Supporting infor-
mation. The results indicate high-concentration of excess CO2 emis-
sions around Washington DC and Richmond, which correspond to
roads with both poor pavement condition and high traffic volume.
Breakdown of the excess CO2 emissions, based on different dissipa-
tion mechanisms (i.e. roughness- and deflection-induced PVI) and
vehicle type, illustrated in Fig. 3, indicates thatmost of the PVI related
emissions in Virginia interstate highways are due to roughness-
induced car fuel consumption, and deflection-induced truck fuel
Fig. 3. Total annual excess CO2 emissions (Tons) for a 7-year period (2007e2013) in
Virginia interstate highways; different colors show the contribution of different vehicle
classes (cars versus trucks) and dissipation mechanisms (roughness- versus deflection-
induced pavement vehicle interaction). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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consumption, whereas the contribution of deflection-induced car
fuel consumption to the total GHG emissions is insignificant.

Upscaling of fuel consumption from pavement section to
network-scale estimates provides a means for strategic mainte-
nance planning when considering network-level carbon manage-
ment. The challenge herein is to find the shortest path that results
in maximum reduction of CO2 emissions with minimum lane-mile
of road maintenance. In this regard, an important feature emerges
from ranking of total excess CO2 emissions in Virginia interstate
highways due to pavement deflection and roughness, with lowest
ranking given to the sectionwith highest excess CO2 emissions. The
rank-magnitude plot of the excess emissions exhibits a power-law
behavior with the exponent of 0.36 for a wide range of sections
with high CO2 emissions (see Fig. 4). The inset in Fig. 4 shows the
probability that CO2 exceeds a particular value x, P(CO2 > x), which
equates 1� CDF. The tail of the distribution, associated with high
emission road sections, exhibits a power-law behavior akin to Zipf's
law (Newman, 2005; Zipf, 1949), i.e. a probability distribution,
where the probability p(x) of measuring a particular value x varies
inversely as a power function of that value, i.e. p(x) ¼ Cx�a, with C a
normalization constant, and a the power-law exponent, that is
slope of the PDF in logarithmic scale. Power-law behavior appears
in a wide range of phenomena such as magnitudes of earthquakes
(Gutenberg and Richter, 1944), frequency of words (Zipf, 1949;
Fig. 4. Excess CO2 emissions in function of its rank. Inset figure shows the probability
that the excess CO2 emissions exceeds a particular value, i.e. 1� CDF.

ent of infrastructure performance: Integrated big data analytics and
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Fig. 5. Comparison of different road selection strategies for maintenance in terms of
emission reduction potential. Selection strategies include random selection, selection
based on annual average daily traffic (AADT), international roughness index (IRI) and
fuel consumption.
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Estoup, 1916), citation of papers (Redner, 1998; de S. Price, 1965)
among others. For the network of Virginia interstate highways the
exponent of power-law distribution at its tail is estimated using
maximum likelihood as a ¼ 4.32. The head of distribution which
deviates from power law corresponds to the road sections with
negligible excess CO2 emissions.

It can be shown that percentage reduction of CO2 emissions r is
related to the power-law exponent a (see Appendix A for the
detailed derivations):

r ¼
�m
N

�2�a
1�a � 100 (8)

wherem/N is the ratio of maintained roads to total roads. Note that
the above expression is valid when the phenomenon has a full
power-law distribution. In case of the excess CO2 emission for
which only the tail follows a power-law behavior, the above
expression provides a lower bound to the emission reduction and
the reduction of CO2 emission is greater that r.

Given the underlying power-law distribution of CO2 emissions,
ranking based on this metric enables separating the few road sec-
tions with high excess CO2 emissions, from the many low impact
ones. Hence, it provides the shortest path for the network-level CO2
emission reduction and an optimal framework for maintenance
Fig. 6. Map of potential excess CO2 emissions reduction in Virginia roadway network for 20
reduction if selected for maintenance. (For interpretation of the references to colour in thi
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management strategy. Such maintenance strategy maximizes the
potential for excess fuel consumption and CO2 emissions re-
ductions for a constant given maintenance activity. Herein, the CO2
emission reduction rate of selecting pavement sections based on
this ranking scheme is compared with selection based on other
criteria, such as randomly maintaining the roads, choosing the
roads based on traffic volume and the current practice of selecting
roads based only on their IRI values. The result of this comparison,
shown in Fig. 5, reveals that an informed selection based on ranking
PVI-induced emissions, which is an integration of road conditions,
traffic loads and climatic conditions, leads to a maximum reduction
rate of CO2 emissions per lane-milemaintained. To further illustrate
the significance of benefits that can be gained from ranking of total
CO2 emissions at network scale, the ranked road sections are
categorized into ten groups, each representing 10% of the total
excess CO2 emissions and illustrated with different colors in Fig. 6.
Combining such data with GIS technologies provides a tool to
graphically highlight the locations with high potentials of emis-
sions reduction. Note that maintaining respectively 1.59% and 4.24%
of the total analyzed lane-miles in Virginia roadway network
(sections represented respectively, by red and orange colors in
Fig. 6) will result in 10% and 20% reduction of total excess CO2
emissions. The same result would require maintaining 9.81% and
19.78% of the lane-miles when using random selection, 6.94% and
13.4% when using high traffic volume roads, and 2.36% and 5.52%
when selecting road sections based only on the IRI values. The
significance of improvement is more pronounced noting that while
1% of Virginia interstate highways include more than 500 lane-
miles, for larger states with bigger roadway networks even 1%
can translate to thousands of miles.

One shouldnote that the above analysis does not take into account
the environmental footprint associated with maintenance and reha-
bilitation, nor it includes the emission corresponding to
maintenance-related congestions. Furthermore, themethodherein is
based on current pavement conditions, and provides a means to
select the roads for maintenance. A comprehensive optimal mainte-
nance strategy must also take into account the environmental foot-
print for different maintenance procedures to provide guidance not
only for selection of roads for maintenance, but also for the mainte-
nanceprocedure that results inminimumenvironmental impact over
the full lifecycle of the pavement. This requires, in addition to the
embodied emission of various maintenance procedures, models that
can predict the time evolution of pavement properties such as ma-
terial and structural durability models. However, if such information
is available it can be included in the proposed ranking algorithm to
13. Road sections represented by red color are the ones with highest potential for GHG
s figure legend, the reader is referred to the web version of this article.)
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arrive at an optimal maintenance strategy considering the full life-
cycle emissions of roadway networks.
6. Conclusion

To conclude, a method is proposed that integrates data on
pavement structural and surface condition, car and truck traffic,
climatic condition, and weigh in motion measurements with
computationally efficient PVI modeling to perform a comprehen-
sive network-scale analysis that provides estimates of the total
excess CO2 emissions associated with pavement roughness and
deflection. The models used in the network-scale analysis are easy
to implement and require a minimum amount of input parameters,
which are typically available to agencies. In case of missing data and
to account for the uncertainty of input variables, it is shown that a
Monte Carlo simulation scheme can be used to find the confidence
bounds of excess fuel consumption and the corresponding CO2
emissions. When applied at the network level, such an approach
can guide the shortest path towards the reduction of excess CO2
emissions by informed selection of roads for maintenance. As such,
it can serve as an additional criterion for an optimal maintenance
and rehabilitation and ideally as a tool to reduce CO2 emissions in
conjunction with a full lifecycle assessment (i.e. by including
embodied emissions, maintenance emissions, and other lifecycle
impacts necessary to fully capture the potential savings) and
powerful available optimization algorithms. The proposed
approach thus contributes to closing the gap by integrating the
network level use-phase environmental impact in pavement LCA.

In addition, integration of pavement condition data and GIS
provides a pavement management system with capabilities to
graphically display pavement conditions and maintenance de-
cisions through their lifetime. Finally using efficient and easy to
implement model-based approaches for large data analytics,
transportation agencies can go beyond the distress-based pavement
management systems and go a long way in making economically
and environmentally sustainable network-level decisions.
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Appendix A. Impact of power-law exponent on effectiveness
of ranking algorithm

A.1. Power-law distribution

The probability density function of a random variable X with
power-law distribution with parameters xmin and a, (a > 2) can be
expressed as:

fXðxÞ ¼ Cx�a ¼ ða� 1Þ x�a

x1�a
min

(A.1)

where the constant C is determined by normalizing the area under
the probability distribution function to unity. The exceedance
probability which is one minus the cumulative distribution func-
tion is expressed as (Newman, 2005):

PðX > xÞ ¼ 1� FXðxÞ ¼
x1�a

x1�a
min

(A.2)
A.2. Ranking Algorithm

Consider a roadway network with the total of N equal length
road segments. The goal of ranking algorithm is to selectm < N road
segments such that the total impact (e.g., CO2 emissions) T is
reduced by r percent.

Let the impact of each road section be represented by
Xi{i ¼ 1,2,/,N}. One can write the total impact as T ¼ N � E[X]
(assuming a > 2 ensures that E[X] is finite). Let a new random
variable Y¼{XjX > xm} represent the maintained roads. Using con-
ditional probability, the probability density function of Y can be
expressed in terms of the probability density function of X:
), (a) in function of a for 10% maintained roads; (b): in function of ratio of maintained
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fY ðyÞ ¼
fXðyÞZ ∞

xm
fXðxÞdx

(A.3)

Thus the expected value of Y is readily evaluated:

E½Y � ¼ 1Z ∞

xm
fXðxÞdx

Z∞

xm

yfXðyÞdy (A.4)

To determine the effectiveness of ranking algorithm it is
necessary to obtain the relationship between r and the total
number of maintained road segments m. To this end one needs to
find xm such that m�E[Y] ¼ r�N�E[X]/100. Also it is easy to show
that m ¼ N

R∞
xm fXðxÞdx. Thus using Equation (A.4) one can write:

Z∞

xm

yfXðyÞdx ¼ r
100

Z∞

xmin

xfXðxÞdx (A.5)

Assuming the impact follows a power-law distribution with
parameters xmin and a, the above expression can be written in
terms of the exponent a:

Z∞

xm

y1�ady ¼ r
100

Z∞

xmin

x1�adx (A.6)

For a fixed value of lane-mile maintenance m, the percent
reduction in the impact is:

r ¼
�m
N

�2�a
1�a � 100 (A.7)

Alternatively for a fixed percentage of impact reduction (r) one
needs to maintain m road segments where:

log m ¼ 1� a

2� a
log

r
100

þ log N (A.8)

Fig. A1(a) shows the percent reduction in function of a for 10%
road maintenance (m/N ¼ 0.1). It can be observed that the effec-
tiveness of the ranking algorithm decreases as a increases.
Fig. A1(b) shows the effectiveness of ranking algorithm r in function
of ratio of maintained roads to total roads m/N for different values
of a>2. For instance to achieve 10% CO2 reduction one needs to
maintain 1%, 3.2%, 4.6% and 5.6% respectively if a ¼ 3, 4, 5, and 6.

It is worth noting that the above analytical expression is valid
when a phenomenon follows a full power-law distribution. In case of
the network-level CO2 emissions, where only the tail of distribution
has a power-law behavior, the above expression provides the lower
bound for r and the real reduction percentage is more significant.

Appendix B. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jclepro.2016.06.198.
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